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I. Introduction*

Liner operations are characterized by a specific number of
ships sailing one predetermined route to several ports at various
times, between ports in Europe, for instance, and ports on the
West Coast of North America. The ships are usually carrying
an assortment of merchandise, shipping space normally being
purchased by more than one individual at each port. The
shipowner’s, or shipping operators’ problem is to choose a
sequence of perts which will insure a high demand for shipping
space to coincide with the liner’s time of arrival. Returns to
the shipowner will depend on decision parameters such as
the number of ships, the ships’ characteristics and the schedule
chosen for use.

The inflow of goods to each port may vary considerably over
time (by seasons, for example). It is quite difficult to adopt a
schedule that will take advantage of peak demand while having
reasonable utilization of the liner capacity during periods of
lower inflows of goods. The addition of extra ships during peak
periods is one possible solution to this problem. The problem,
however, of deciding the exact number of ships which will
sail the route at any one time remains.

If information concerning the inflow of goods to each port can
be provided (from past shipping records, for instance) or if fairly
reliable forecasts can be made, the possibilities of savings and/or
increased earnings exist. Simulation is a useful method of
analyzing the optimization process which occurs here. The
effects of uncertainty variables such as inflows of goods, waiting
times and freight rates can be inspected and evaluated using
this method.

! The simulation model described was developed on the initiative
of Albert Harloff at A.S. Bergens Mekaniske Verksteder. The project
has received support from A.S. Bergens Mekaniske Verksteder,
Norwegian School of Economics and Business Administration, and the
Royal Norwegian Council for Scientific and Industrial Research.

This publication is, with a few changes, a translation of an article
in Sosialekonomen no. 9, 1969.
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Figure 1.
II.  Survey of the modelr

In working with the model we have used a concrete route
as an example of what can be done. This route included a
number of ports in Europe and a number of ports on the
West Coast of North America. This route is illustrated in
Figure 1,

Thus we have the ports clustered in two geographical areas,
where the distance between the two areas is large in comparison
to the distances between ports within the areas. On the figure
is drawn an example of an arrival sequence. The choice of
this sequence can obviously be crucial for the result of the
operation of the route. If we look at the ports on the West
Coast of North America, we see that the ships will perhaps
call at each port only once, either on their way from Europe
or on their way back. It may also be profitable to call at some
ports to unload on the way from Europe, and call at the same
ports to load on the way back, in order to make better use of
the liner’s capacity. The choice, of course, will depend on a
comparison of the extra revenues obtainable from increased
quantities of cargo, and the extra costs, such as fixed costs
incurred when ports are called at twice instead of once. In
the model this event may be examined by varying the sequence
in which the ports are called. For the case where a port is
called at twice during one roundtrip, the model will automat-
ically assure that cargoes are unloaded at the port on the way
from Europe and loaded on the way back.

The inflow of goods to the ports will determine the optimal
number of ships, and, as a consequence, the sailing intervals.
The type of goods available to be shipped will determine if it
will be profitable to use ships with special holds, for instance
holds designed for goods which need cold storage. We have a

! A preliminary description can be found in Doksred et al. (4).
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number of factors then, which exert influence on each other.
The optimal number of ships can be different for different
arrival sequences, and at the same time the optimal number
can vary with the ship type. Our model ought to incorporate
a simultaneous adjustment of arrival sequence, the number of
ships, and the ships’ characteristics (i.e., speed, deadweight,
total volume, volumes for special holds, and equipment for
loading and unloading).

The interrelations mean that we must content ourselves with
some type of suboptimization. In the model this is done in the
following way: We start out with a certain ship-type. We then
choose in advance the arrival sequences that seem most usable
and that we want to compare. Within each arrival sequence
we carry out as many simulations as we want with various
numbers of ships (one simulation corresponds to one roundtrip
with each ship), and for each arrival sequence we record the
optimal number of ships. Finally, we will have found which
of the arrival sequences inspected is the optimal, and also an
optimal number of ships for this sequence.

We can then alter the data for the ships and repeat the opera-
tion described above. This can be done for as many types of
ships as desired; in this way we will also get an indication of
which type of ship is the optimal.

The criterion used for the optimization is net profit per day
with time horizon equal to the time required for one roundtrip.
The roundtrip time follows from the optimization. It will
vary with quantities and types of cargo, because different goods
need different loading and unloading times. What is being
done, is therefore to maximize the net profit per day for each
roundtrip at a time. In order to do this optimization, we must
have a starting port where the ships are always initially empty.
The time used for one roundtrip is then calculated from the
point of time when the ship starts loading in the starting port
and ending when it starts loading in the same port after having
called at the other ports in the route (in our example we use
Oslo as a starting port; see Figure 1). This arrangement may be
unrealistic for some routes. Relaxing this restriction will gene-
rally leave us without an exact optimum; the degree of ap-
proximation however, can be good if we choose as the starting
port the port with lowest average amount of goods in transit.
This approximation becomes better if the goods which remain
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in the liner at this port add considerably to the profit, so that
there is usually no doubt that they should be carried.

During the simulations we generate stochastic inflows of
goods to the ports on the basis of data for expectations and
variances. The generating process for each simulation occurs,
for all of the goods, before the ship starts loading at the starting
port. Then, before each roundtrip, the model chooses the types
and quantities of goods that will maximize net profit per day.

Waiting times in the ports may vary considerably. These
times depend on the time, on the day and on the week, during
which the ship arrives at the port. Waiting times also depend
on conditions in the ports. These waiting times can be generated
as stochastic variables for each port based on data for means
and variances of the actual waiting times.

III.  The maximization part of the modelt

The notations used in the model are the following:

Service speed s (knots)
Distance sailed per roundtrip d (miles)
Carrying capacity (deadweight) K (tons)
Total volume in cubic feet V (cf)
Other constraints on volume Vis Vo,— (cf)
Fixed costs for the ships C; ($/day)
Additional costs at sea (fuel etc.) C; ($/day)
Fixed port costs in port no i H; ($/call)
Loading costs for cargo no. j k; ($/ton)
Unloading costs for cargo no. j k; ($/ton)
Loading speed for cargo no. j l; (tons/day)
Unloading speed for cargo no. j ;' (tons/day)
Stowage factor for cargo no. j q; (ctfton)
Freight rate for cargo no. j f; ($/ton)
Waiting time at port no. i (can be generated

as a stochastic variable) v; (days)
Number of types of cargoes n
Number of ports in the arrival sequence m
Amount of cargo no. j available w; (tons)
Amount of cargo no. j to be carried (the un-

knowns) x; (tons)

! A model similar to this part of our model is discussed in Pollak,
Novaes and Frankel [6].
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By a cargo we mean one type of good which is carried from
one specific port to another specific port. Information on port
of origin and port of destination for each cargo is initially
read into the model. If one type of cargo is carried from, or
eventually to, several different ports, this cargo will get a new
index j for each port of origin and/or port of destination,

By fixed costs we will mean the sum of all costs which do
not depend on whether the ship sails or not. These may contain
depreciation, crew wages, stores and supplies, insurance (ex-
cluding cargo) etc. We assume that these may be distributed
over time with a fixed charge per day.

Using the notation above we can set up the following ex-
pressions:

Time at sea + waiting times (i.e. fixed time per roundtrip
independent of the amount of cargo):

d m
ﬂo= 24 . s + ‘glvl

»m
For simplicity we will write ). which is to be understood
=1
as meaning that i runs over all the ports in the arrival sequence
considered, and, for the case where we have double calls at
some port during a roundtrip, one port will correspond to two
s in the summation above.
Loading and unloading time for cargo j:

1 1
Bi=—+— j=1,....n.
J lj lj ’ ’

B is measured in days, Bij=1,..., nin daysfton.
Fixed costs (with negative sign) independent of the amount
of cargo: :

d

m m
= —(C,+C,)24 . ‘Z_:IHa-Cx : ‘Zl”x=

245
Value added per ton for cargo j:

, I 1 '

J=1...,n

d m
==Cfo~C+ 57—~ iZ H,;
=1
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Value added is here defined for our purpose, in that we also
subtract from the revenue the fixed costs per day which accrue
during the time needed for loading and unloading of one ton
of cargo j.

We wish to maximize the following expression:

p=tota¥it ... +a.%,
Bo+Bixit ... +Bux,

where the a;’s and 8,’s are the coefficients and a, and 8, the
constants defined above. P can now be maximized using para-
metric linear programming!.

In order to be able to write the objective function in the form
of P above, we first have to make sone simplifications. We
disregard non-linearities in connection with loading and un-
loading. Since work is usually done only at certain times of
the day, overtime work requiring extra pay, loading and un-
loading speed, and thus loading and unloading cost, can vary
depending on what time of the day the ship arrives at the port.
In order to apply the above method, we calculate a certain
number of hours of work per day in each port, i.e. a certain
amount of each type of cargo can be loaded or unloaded per
day. .

Among the costs which are calculated as fixed independent
of the amount of cargo, the fuel cost is obviously not fixed.
It is however difficult to treat it in any other fashion. This cost
will increase with increasing amount of cargo although not
proportionally. A part of this cost should therefore be subtracted
from the value added for each cargo, varying according to the
weight of the cargo, how far it is to be carried, and how loaded
the ship is in advance. This consideration could influence the
choice of optimal cargoes. Tests show, however, that in actual
practice the numerical differences are so small that they very
seldom would influence the choice of cargoes, and then only
the choice of those cargoes whose freight rates and other
characteristics make them marginal (i.e. they are close to the
limit which would prevent them from being loaded). This
fact means that for practical purposes, the resulting costs are
nearly equal for the two or more cargoes being considered at
that time.

1 See Appendix A.
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Another difficulty is that the total cost, and therefore the
net profit, can differ considerably from the correct amount.
This will occur if one calculates the fuel cost as a fixed amount
per day, i.e. for a fixed weight of cargo, instead of calculating
it separately between each pair of ports. This difference is
particularly important if the volume becomes the overriding
constraint. Elimination of this effect can be accomplished by
reading into the model information about fuel cost per day for
various deadweights and then interpolating between these
values to find the approximately correct cost.

The constraints may be thought of as being built up from
several blocks.

1) Constraints which assure that the amount of each cargo
loaded must be less than or equal to the available amounts of
each cargo, i.e.

x<sw,, i=1, ...... s N
where all w,, i = 1, ..., n are stochastic variables generated

before each roundtrip.

2) Weight constraints for each port:
All cargoes + all cargoes — all cargoes <K

loaded in transit unloaded
or:

n

Yt <K,  i=l,....a

i=1

Here we have q,,, =1 if cargo j is carried from port i to port
i+1 (also in transit), and 0 otherwise.

3) Volume constraints for each port:

All cargoes + all cargoes — all cargoes <V
loaded in transit unloaded
or:

n
Za"+m+‘]xJSV’ i=l, -.-.,m
i=1

Here a,,p4,,;=4,, i.e. equal to the stowage factor of cargo j
if this cargo is carried from port i to port i+ 1, and 0 otherwise.
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Further we may for example have:

All cold cargoes + all cold cargoes — all cold cargoes <V,
loaded in transit unloaded

or

JZ a"+sm+"jijVl, i=1, ISR (]
=1

Here a,18m+1,j=8,4m+4,; if cargo j is cold cargo, and 0 other-
wise.

The statement concerning carrying goods from port i to port
i+ 1 must be modified for port m. In this case i+1 must be
replaced by 1, i.e. the starting port.

As an example we may consider five cargoes carried in an
arrival order containing five ports. The arrival sequence may
I be enumerated 1 -2 -3 —-4-5—1.

{ Cargo Port of Port of
' no. origin destination
| 1 1 4
' 2 3 5
| 3 2 1
4 1 3
5 4 1

Cargo | and 3 are cold cargoes.

The information above will in the model produce the follow-
il ing constraints:

i x <w
:' 1 X3 <w,
f X3 Swa
1 Xg <w,
| X5 Swg
Xy + x4 <K

% + x5 + % <K

xn + x + Xg SK

X2 + X3 + g <K

xg + x5 <K

N* +geXa <V

0% +axs +qa%s <V

% t+qe%e +qsxs -4 4
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GoXs +qa%s +q5x5 <V

9a¥3 +gsxs <V
0%y <h
0%y +qgXs <h
9% +q3x3 <N
Ja%3 <h
Ga¥s <V

IV.  Dual evaluators or shadow prices

From the maximization of a linear programming problem
one gets as part of the solution a set of dual evaluators, also
called shadow prices, one for each constraint, which indicates
how much the objective function (e.g. the profit) would increase
per unit increase in the right-hand side of the actual constraint!.
By summing the respective dual evaluators one can find the
result of an increase in several constraints simultaneously. This
information can be very useful?.

In our special problem we are interested in how much net
profit per day would increase per ton increase in deadweight
and/or per cf. increase in total volume for cold cargoes. The
non-linear objective function causes the dual evaluators not to
be immediately determinable from the optimal simplex-
tableau as is the case with linear profit function; they can, how-
ever, easily be calculated3.

After each simulation we can get some sort of internal prices
on the input factors weight and volume. These values can tell
us how much we at most should be willing to pay per day for
extra units (tons or cf) of each factor. Another example of the
use of these values is for comparisons between different types
of volume. If, for instance, the dual evaluator for volume of
cold cargo is higher than for total volume, the volume of cold
cargo should be a larger portion of the total volume.

The dual evaluators give information that we otherwise
would have been able to get only by alternative simulations
where different combinations of weight and volume were exa-
mined. These extra simulations would require considerable
amounts of computer time, while calculation of the dual eva-
luators for each simulation can be done in fractions of a second.

! Under the assumption that the basis does not change.
? See e.g. A. Charnes and W. W. Cooper [1].
3 See Appendix A2,
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V. Generating the cargoes

The modified simplex algorithm which is being used, is only
a deterministic method of choosing from given cargoes those
amounts which will result in the largest net profit per day per
ship. The inflow of cargoes is stochastic and we assume that
this inflow can be characterized by the expected values and
the variances. These values may be based on historical data
or eventually on forecasts. The availability of data is a problem
that will not be treated in this article. We will asume that
such data can be attained. In the simulation model we may
choose between the following distributions for the inflow of
cargoes:
a) A deterministic solution based on given amounts of cargoes

in the ports.

b) Poisson distribution.
¢) Lognormal distribution.

This distribution is non-symmetric with median below the
mean. It always give values greater than zero.

d) Uniform distribution.
e) Beta distribution.

The last three probability distributions are generated using
a random number generator for random numbers between
0 and 1.

Expected values and variances are given per day, We thus
generate stochastic amounts of inflows of goods per day and
multiply these by the number of days since the last ship was
in the actual port!.

By reading into the model seasonal indices for each cargo,
one will often get a more realistic model.

V1. The simulations

The simulations can roughly be described as follows?. First
we read characteristics of all the cargoes, all the ports and all
the ships that we are going to use. We then read the first arrival
sequence. For each sequence the simulations are started with

! In reality we use an approximation for this period of time which

will be described later.
% See flow-chart in Appendix B.
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a certain number of ships in the route. With this number of
ships we do as many simulations as desired (one simulation
corresponds to one ship having made one roundtrip). Finally
the mean and standard deviation for net profit per day for all
the simulations are calculated, and also the mean roundtrip
time. From the dual evaluators for each simulation we can
compute the average increase in net profit per day resulting
from increases in deadweight and/or volume.

The number of ships is now increased by pne and the same
procedure is repeated, using the same arrival sequence. The
new average net profit per day is compared with earlier simu-
lations. If the profit has increased, the number of ships is in-
creased by one. The simulations stop when the average profit
is reduced. The optimal number of boats for the current arrival
sequence is thus one less than the last number inspected.

We then read new arrival sequences and repeat the same
procedure as above. Each time we compare the average net
profit for the optimal number of ships with the highest we
had reached before. Finally we will have found an optimal
arrival sequence, a corresponding optimal number of ships,
and the information we get from the dual evaluators for this
case. These evaluators can give us some idea of whether the
type of ship we are using, is the optimal.

A special problem concerns the goods which are left behind
by the ships. In the model we have, more or less arbitrarily,
established that cargoes left behind will wait until the next
ship comes. If they are left behind once more, then they leave
the model (e.g. they are being carried in some other way).

Another problem is the number of days to use as the basis
for generating cargo inflows. The correct method would be
to compute the number of days from the time the last ship
left the port until the next ship leaves the port. The cargo is,
however, optimized assuming that we have full information
on the amounts of cargoes at each port from the beginning of
each roundtrip. The time until each port is left is thus a result
of the optimization, while the optimization is influenced by
the number of days for which the cargoes are generated. In the
model we approach this difficult interaction in the following
way: When there is only one boat in the route, the inflow of
cargoes is generated for the number of days needed for the
preceding roundtrip. Correspondingly we use, when we have

Ll B ey
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more than one ship, the time between arrivals of ships at the
starting port. The error made in this way should be negligible.

Certain steps have to be taken in order to get the simulations
for each number of ships started. In particular this involves
specifying an initial roundtrip time to use as a basis for generat-
ing the inflow of goods for the first roundtrip. However, we do
not want this specification of initial roundtrip time to have any
effect on the results. It is therefore wise to exclude the first one
or two simulations in computing mean and standard deviation
for net profit.

VIL. Control of scheduling

When more than one ship is used, the problem arises of how
to schedule the ships. Since we use the number of days since
the last ship started to load at the starting port as the basis for
generating the inflow of cargoes, an accidental variation in the
roundtrip time in some direction may cause a ship to start
approaching the ship ahead of it. The nearer this ship comes
to the one in front, the less cargoes are generated; this will
result in the ship approaching the other ship even more. We
try to control this difficulty by a clock which registers the cur-
rent time. The clock for each ship is registered every time the
ship is about to start loading in the starting port.

The following variables are used:

Current time for ship no. i (clock) Cl,
Time basis for generating cargoes for ship no. i 4
Last roundtrip time
Upper constraint on roundtrip time for the ship that

is about to load in the starting port (shipno.i+1) TU i+1
Corresponding lower constraint TL;,,
Permitted deviation in ,,phase’’ between the ships D
Number of ships n

The deviation D will have to vary with the number of ships
since the ships will get out of ,,phase” more easily as their num-
ber increases. In the model this is accomplished by dividing
an initial D,, by the current number of ships. If for example
D, =10 days we have:
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Number of ships D

2 5 days
3 3 1/3 days
4 2 1/2 days

After having unloaded ship no. i in the starting port, new
values for our variables are computed as follows:

cl, =Ci4/+T
¢, =Cl,-Cl,_,
TU, ,y=Cl,—Cl ., +t;,+D
TLi,,=TU;—2D
Fori=1,i—1is replaced by n. For i=n, i + 1 is replaced by 1.

The result of this control will be that a ship may wait for
some time extra in the starting port in order not to come too
close to the ship ahead of it. This waiting occurs only if there
was not enough goods on the last roundtrip to increase the net
profit per day when the extra waiting time is taken into account.
During simulation this fact is taken care of by using the value
TL instead of the sum 8y+fx,+ . ... in the denominator for
the expression of P until this sum exceeds TL.

It may also happen that a ship will have to leave cargo
which it otherwise would have carried. This happens if it
must have finished unloading in the starting port by a certain
point of time in order not to drop too far behind the boat ahead
of it. This problem is solved by the additional constraint:

By +Paxa+ ooon.s +Bx,.<TU-8,.

It is possible that, without too large a loss in reliability, one
could make the simplification of always looking at one of the
boats and generate the inflow of cargoes for the time this boat
uses on each roundtrip. We would then divide the inflow of
each cargo by the number of boats. All the boats would have
the same composition of cargo, and we would save a great deal
of simulation time. Scheduling would, of course, be no problem
any longer. The model used at present, however, allows us
to incorporate the possibility of letting one boat skip a port
where the amount of cargo waiting is small and let the cargo
wait for the next boat. Otherwise the ships would have to call
at all the ports no matter how little cargo was available.
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VIII. Cargoes with priority

For some routes the ships may be obliged to always carry
some types of cargo even though they could be less profitable
than other available cargoes. This will depend on the concession
or special agreements. In the model we use a parameter for
cach cargo which tells us whether the cargo has priority or not.
Cargoes with priority will be loaded first; the model will then
choose the most profitable cargoes from those remaining using
the modified simplex-algorithm. This arrangement means that,
on entering the simplex-algorithm, the following changes have
taken place with the constraints: w,;=0 for the cargoes with
priority. In addition TU— 8, for the last constraint is reduced
correspondingly.

IX. Applications of the model

In the model there are several variables which might be opti-
mized. We have mentioned arrival order and number of ships,
but this optimization depends upon the specification of type of
ships. One might also be interested in testing the result of
alternative types of ships as to deadweight, volume, volume of
special holds, loading and unloading equipment, service
speed etc.

One can also simulate to find an optimal utilization of ships
already sailing. To make this possible, we can in the model use
ships with different characteristics simultaneously. In the liner
trade one usually has to establish a service such that the ships
arrive at rather fixed times and with even intervals. The time
schedule for such a service is in the model a by-product of the
optimal combination. It is also possible to simulate such that
the ships always use a fixed time per roundtrip as determined
beforehand; the cargo will then be optimized taking this fact
into consideration. Technically the schedule is fixed by putting
D,,=0 for control of scheduling. .

Finally one might mention the possibility of using the model
in the operation of an existing route. Then all the data for the
ships will be given. At certain points of the route one may know
with certainty the amounts of cargoes in the nearest ports,
while the amounts in the rest of the ports are more uncertain.
Based on given amounts of some cargoes and probability distri-
butions for the uncertain ones, one could simulate and find



17

which cargoes ought to be loaded; eventually determining if
the arrival sequence should be changed somewhat can be
made possible.

Since a model is an abstraction of the real world, it, of course,
has to be incomplete and inexact in several respects. The
real world is far too complex to be analyzed adequately without
the simplification that a model provides. The real basis for
judging the usefulness of a model is not if it is entirely exact,
but rather contains enough sufficiently relevant elements to be
efficiently used by managers to improve their results. We be-
lieve tHat this model can be useful in that respect.

In the work with the model we have put emphasize in making
it so general that it can be used on various types of problems
in liner operations. With the framework now built, one can add
special aspects of reality which each particular user might want
to take into consideration.

APPENDIX A

In this Appendix we will briefly describe the principle behind
the solving of a maximization problem with linear constraints
where the objective function is non-liriear, but consists of a
ratio where both numerator and denominator are linear in the
variables!. Finally the solution of a numerical example will
be calculated. We assume that the reader is familiar with the
simplex-method?.

1)} The primal problem
Our problem can be formulated as follows?:

+ax+ ... +ax
1 Max P =20 91%1 a
) Bo+Pimi+ ... +Bux,
subject to:
ap¥t+ ... +a1,%,<b,
@ Lo Cerenen ceeeeanas
amlxl + ----- <+ xm"x" S blll

%20, i=1, ...,n

! See also Pollak, Novaes and Frankel [6].
2 See e.g. Charnes and Cooper [1], Dantzig [2] or Simonnard [7].
¢ This formulation is called fractional programming,
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We introduce slackvariables Fa+l + v+ Xy m, and (2) is then
equivalent to

I SR

%20, i=1, ..., n4+m

The objective function can be written:

4)  (@—BoP)+(0~fiP)xy + ...... +(a,~B,P)x, =0

We thus want to maximize P such that (4) is satisfied.
We will make a modification of our objective function, in
that we try to maximize!

I= 3 (a-f,P),
J=1

Our problem is transformed to a general problem of para-
metric linear programming; it can now be solved using the
simplex-method.

Our initial basis consists of the column vectors corresponding
to the slack-variables. Our initial simplex-tableau is shown in
Table 1, where 2, ’is defined as

m
. B -
Zy= ‘z ¢; au,
=1

@,; being the current element in row i and column j of the
simplex-tableau.

Gloa—bPay—gP....a,~p P o 0 .... 0
c? *1 X3 cere X Fnt1l Xntg cor Xyl b
Y an L] %n ] 0 0 1
0 ay gy ag, 0 1 0 | &,
0 By Qpp cese Gy 0 0 .... 1 |s,
Zj—tjlﬂlp—alﬂsp—a.z....ﬂ,,P—a,, 0 0 oo 0 I
TABLE 1.

! Proof in Dinkelbach (3].
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Let M={j, ..., j,} be the set of indices for the variables in
the basis before each iteration. A feasible solution is one that
satisfies  (3). The vector x=(x;, «.., X, ¥py1s ¢« oy Kppm) =
0, ...,0,b ..., 5,) is thus a feasible solution. For it to be
an optimal solution we must have z; —¢; > 0 for all j. This implies

P—a,>0 for all j=P>% for all Jj- Let K, be max{-X{,
i J ﬂj ﬂ'

The condition for x=(0, ...,0,4,, ...,5,) to be an optimal

basic solution is that P> K,. We calculate P=22, If P> K,,
0

we have found the solution x which makes P maximal. If

P < K,, the solution is not optimal.

Assume that the solution is not optimal. By setting P=k,,
we will have at least one j not in M such that 2;—¢;=0. Suppose
this index is . We then choose x, as the new basic variable.

The variable to be removed from the basis is found in the
usual way, and a new simplex-tableau is computed. This gives
us a new set of z;—¢,=f,P—a, and a new vector x which is
an optimal basic solution if z;—¢;>0 for all j. This condition
will be satisfied if K,<P<K,, where K; is a new constant

computed by K,=max{§}. We then compute

J
p="ot %%
Bo+Brxx
If K, < P<K,, P is maximal. If not, i.e. if P<K,, we set P=K,
and find the new variable to enter into basis.
This procedure is continued until P actually lies within the
required interval which makes all z;—¢; 20.
To illustrate the methed, we will go through a numerical
example. We have the following problem.

—20+5xl +3x’+2x8

MaxP=
ax 44+ 2%, 4 3x54+ x4

subject to
x <10
Xg < 8
x3< 6
X +xa+ 33518
% +2x3<18
x>0, 1=1,23
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The objective function can be transformed to: Max P such
that (—20-—4P)+(5—2P)x1+(3—3P)xg+(2-—P)x,=0. After
introduction of slack-variables X4 -+. Xg, we can form the
initial simplex-tableau (see Table 2), where our objective
function to be maximized is

S=(5-2P)x; + (3—3P)x,+ (2 P)x, .

o 5-2P 3-3P 2P 0 0 0 o0 o
B x X Xg  Xg X5 Xg X, xg b
0 1 0 0 1 0 0 o0 of 10
0 0 1 0 0 1 0 0 o 8
0 0 0 1 0 0 1 0 o 6
0 1 1 1 0 0 0 1 of 18
0 1 0 2 0 0 0 0 1 18
zj—¢| 2P-5 3P-3 P2 0 0 0 0 0|

Table 2.

We have x; =0, x,=0, x3=0. We want to investigate whether
this solution makes P maximal or not. The condition 2;—¢;20
gives:

2P~520=P>25
3P-3>0=P>1 =>P>25
P-2>0 =>P>9

o =—_4£)= =35, which means that the solution is not optimal.

If we put P=2,5, we have 21—¢,=0, and x, is our new basic
variable,

Pivoting is now performed, and the new simplex-tableau is
shown in Table 3.

¢f 5-2P 3-3P 2-P 0 0 o0 o0 o
P x Xy X3 X4 X5 xg X, xg b
5-2P 1 0 0 1 0 0 o0 o 10
0 0 1 0 0 1 o0 o0 o 8
0 0 ] 1 0 0 1 0 o 6
0 0 1 l-1 0 0 1 o 8
0 0 0 2 -1 0 0 0 1 8
z—¢| 0 3P-3 P-35-2P0 0 0 0

Table 3.
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Our solution is x, =10, x3=0, x3=0. The condition z;—¢; =20
implies:
3P- 3>0=P>1
P- 2>0=P>2 | >2<P<25
5—-2P>0=P<2,5

IL_—20+5'10
T 442-10°

and since P<2, this P is not maximal either.

=1,25

Xy is the new basic variable, and the resulting simplex-
tableau is shown in Table 4.

¢ 5-2P 3-3P 2-P 0 0 0 0 O
B % P Xy Xy X5 Xg X, X b
5—2P 1 0 01 0 0 0 O 10
0 0 1 0 0 1 0 0 0 8
0 0 0 0 3+ 0 1 0 -3 2
0 0 1 0-3 0 0 1 -3 4
2-P 0 0 1 -3 0 0 0 3 4
zj—¢| 0 3P-3 04—-15P0 0 01-05P
Table 4. '

Here we have x, =10, x,=0, x3=4. The condition z2;—¢;20
now gives:
3P— 3>0=P>1
4 -1,5P20=>P<267\ = 1<P<2
1 -0,5P>0=>P<?2

4+20+4° 28
i.e. 1<P<2, which means that P has reached its maximum.
We see that if the constant part of the numerator had been

lower than —30, we would have had P< 1, and it would then
also have been optimal to introduce x4 into the basis.

2) Dual evaluators

In the optimal simplex-tableau for a linear programming
problem one will find the dual evaluator for constraint no. i
as the value of z,,;—¢,,,, i.e. in the column corresponding
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to the slack-variable for constraint no. i. The dual evaluator
for a constraint can only be positive if the corresponding slack-
variable is equal to 0, i.e. if the inequality no. { is tight; the
dual evaluator no. ¢ tells how much the objective function would
increase per unit increase in the right-hand side b; under the
assumption that the increase does not require change of basis
in the optimal solution.

While each z; —¢, in the linear case consists of only one num-
ber, in the initial tableau —¢;, the z;—¢; for our problem will
generally contain two components, in the initial tableau
—a;+B,P. During the iterations a, and f; are changed in
exactly the same way as they would have been if the same
basis had been reached with the numerator or denominator
alone as the objective function. It can be shown that the
d;’s and f;’s for our optimal tableau serve as dual evaluators
for the numerator and denominator respectively given our
optimal basis; our optimal basis is generally not optimal relative
to the numerator or denominator alone as objective function.

If we write for the optimal tableau: Zyyi—Cpyy=d,— B, P,
a@; thus indicates how much the numerator would increase
Per unit increase in b,, while B tells how much the denominator
would change, assuming as before, no change in basis. If we
denote the numerator of our optimal solution N and the de-
nominator D, we can find how much the objective function P
would increase with an increase of b, with k, units, i=1, ..., m,
by computing

N+ ka
lgl i“y N

D+ Y kg,
i=1

Going back to our numerical example, Table 4, we see that
two dual evaluators are different from 0, namely those cor-
responding to the constraints no. 1 and 5. The first one tells
that an increase of b, by one unit from 10 to 11 would result
in an increase of P by

38+4 38

287 1.5 25 = %.0666.
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APPENDIX B

Flow-chart for the main parts of the simulation model.

Read data about ships,
ports and cargoes
I

Number of arrival orders K
Initial number of ships 7

Number of simulations A
ny

k|
Rcad arrival order

[ Number of ships L = 7 |
~F

. |
[_Start off with ship no. 1 ]
N

K |
[ Generate inflow of cargoes |

| Build initial simplcx-tableau |
|

Using a modificd simplex algorithm we
find what quantilies of cargoes will
g - optimally be carried. Compute dual
Next ship cvaluators

Clock is registered
and scheduling is
controlled

Compute mean and standard deviation
for net profit per day and for roundtrip

time
Number of ships
L= Ll

net profit for L ships
larger than for
2

The optimal number of
shipsis L — 1 for thisarrival
order

I

The average net profit for this arrival

order for the optimal number of ships is

compared to the best of the carlier in-

vestigated arrival orders. If the last one

gives higher profit, information about

this arrival order is storcd in the com-
puter iemory

Have we
= investigated X

rrival orders 2

Yes
Print information about
the optimal arrival ofder
and the optimal number of
ships for this order

e

W s

B —
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If bg increased simultaneously from 18 to 19 units, P would
instead increase by

38+4+1 38
284+1,5+05 28

Because of the non-linear objective function, the dual vari-
ables for our problem only evaluates infinitesimal, i.e. in-
finitely small increases in the right-hand side; it can be shown?,
however, that these dual variables can be calculated by the
following formula:

=0,0762

1. Nz 1 _ =
“t=‘§a.—ﬁ‘ﬂl=j(ai"}’ﬂi)

For the first constraint we have:
1
u1=2—8(4— 1,3571 - 1,5) =0,0702

We see that the marginal value per unit is a little higher
than the total value for the first unit.
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