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HIERARCHICAL DECOMPOSITION IN LINEAR
ECONOMIC MODELS*

FINN KYDLANDt
The Norwegian School of Economics and Business Administration

In decomposed linear programming models it is generally not possible to decentralize
by prices alone. The Dantzig-Wolfe procedure, for instance, delegates weights on basic
solutions in addition to the equilibrium prices. In this paper we present a decomposition
procedure for linear models where we in addition to prices delegate a hierarchical
ordering. In many problems this ordering makes the assignment of weights unnecessary,
and gives the divisions more autonomy in their decision making. An operational condition
is found for determining if, for any given problem, the new decomposition procedure will
achieve coherent decentralization.

1. Introduction

The problem of finding equilibrium prices to delegate to the divisions of the economy
insuring the overall optimum has been discussed by a long list of economists, including
Koopmans ([10], [11]), Arrow-Hurwicz {1], Gale [8], Baumol-Fabian [3] and
Charnes-Clower-Kortanek [5].' The difficulty is due to couplings or externalities
among the divisions. They may use common resources so that the optimum of one
division may preclude other divisions from reaching their optimum. The problem of
reaching an equilibrium by prices alone has been particularly difficult in the case when
the objective function and the constraints are all linear, and this is the case that will
be treated in the present paper.?

The problems may arise at the microlevel in the organization of the firm, where the
central unit, without knowing the feasible sets of the divisions, attempts to reach a
global optimum only knowing the available overall resources. Decentralization also
has important applications for national planning and resource allocation.?

It is generally possible to find prices such that the global optimum is also optimal
for the divisions. These prices can for example be found using the Dantzig-Wolfe
procedure [7].* With this method prices are given to the divisions by the central unit.
The divisions then submit plans which may or may not satisfy the global constraints.
A price-adjusting mechanism is then devised so that, after several iterations, the
divisional plans bring the global plan as close to feasibility as possible, while producing
a maximum increase in the value of the objective function.

An alternative method is due to Balas [27], where the purpose of the price-adjusting
mechanism is to induce the divisions to submit such new plans that will bring the

* Processed by Dr. Willard I. Zangwill, Departmental Editor for Linear and Nonlinear Program-
ming; received March 1973, revised March 1974. This paper has been with the author 1 month for
revision.

t The author is grateful to David Cass, Robert Kaplan, Sten Thore and a referee for valuable
suggestions on earlier drafts. This report was prepared as part of the activities of the Management
Science Research Group, Carnegie-Mellon University.

! Charnes-Clower-Kortanek refer to the problem as that of coherent decentralization.

2 The problem of reaching equilibrium in linear systems was noted as far back as in 1949; see
Samuelson [14].

3 See articles by Kornai-Liptak {12] and Malinvaud {13].
¢ See also Dantzig {6, Chapter 23].
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global constraints as close to feasibility as possible while preserving optimality in
relation to the initial global objective function.

In both cases the solution with the final revised prices is usually not unique, and the
divisions cannot find the correct one among the infinitely many alternative solutions
without further information. The final step will generally involve delegating not only
the final prices, but also weights for the divisions to use on solutions from previous
iterations, which means that the central unit essentially tells the divisions what action
to take, and the prices may have little importance at the end.

Charnes-Clower-Kortanek [5] proposed an alternative type of information, namely
preemptive goals, which in addition to prices will lead to coherent decentralization.
This essentially means delegating part of the overall resources to each of the divisions
in the form of goals with penalties for deviations, such that if the goals are met, the
requirement of global feasibility for the solutions will also be met. This procedure thus
requires a lot of information to be transmitted from the central unit to the divisions,
but it does give the divisions more autonomy in the decision process than the ones
mentioned so far.

The purpose of this paper is to explore an alternative form of information that may
be used in many cases, and which gives the divisions more autonomy than the previous
procedures. This is based on the idea of a hierarchical ordering; that is, there may
either be a natural order in which the decisions among the divisions will be carried out,
or else an ordering may be imposed on them.®

In §2 we define a hierarchical ordering and hierarchical decomposition, and prove
some results showing how coherent decentralization can be achieved by means of the
hierarchical ordering. In §3 we indicate potential applications in central planning, and
give illustrating numerical examples in §4. Finally, some concluding comments are
offered in §5.

2. Hierarchical Decomposition
Consider the hierarchical master problem
maximize 3 %, cz;
8. t. Az; = d;, Jj=1...,p
(M) 2iaCan=doy, J§=2,...,p
z, 2 0, i=1...,p

where A;ism; X n,,j=1,...,p,and Cppismg, X ms , 7 = 2,...,p.

Assume that none of the constraints of (M) are redundant. The global constraints
are assumed to have an almost lower block-triangular structure, Note that, possibly
after rearranging the order of the divisions, any decomposition problem will fit into the
general form of (M). However, in practice we will often have mo; = 0 for several j,
perhaps even for all § < p.

The dual to (M) is

minimize -7, wid; + P, vidos,
(D) 8. t. WA; + D Bemaxp 1 WChi 2 ¢, F=1,...,p

Let the optimal solution to (D) be (4@, ..., 4;,02,. .., 0p).

5 'The issue of causal ordering has been thoroughly discussed by Simon [15).
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Consider the following divisional problems:
Division 1 (to be solved first)
maximize (¢ — 2 2., 5:Ca)z1,
(Py) 8. t. Ay = dy, n =0,
with dual problem
(Dy) minimize wd;, s.t. wArZa— 22,5Ca.

Let the optimal solutions to the primal and dual problems be z;* and w*, respectively.
Division k, 1 < k < p (to be solved after the solutions r,*, . . ., zi_, to the previous
divisions have been obtained)

maximize (¢ — E}’_,m 5:Ca)xh ,
(P)‘) 8. t. Apxy = dy ,
Cuxr = do — Z’,‘:} Cijz;*, o =0,

with dual problem
minimize wdi + v (doe — D42} Crizi*)
(Dy) 8. t. wdi + 0Ch Z & — 2040 0:Ca -

Let the optimal solutions to the above problems be z:* and (us*, v:*), respectively.
Division p (to be solved after the solutions 2, . . ., z}_, have been obtained)

(Pp) maximize ¢z, , 8.t. Apzp,=4d;
Copty = dop — 274 Coizi®, z, 2 0,
with dual problem
minimize uydy + vy (dop — 2278 Cpizi*)
(D,) 8. t. UpAp + 0,Cpp = €5 .

Definition 1. By a hierarchical ordering we shall mean an ordering of the divisions
such that the formulations (P;),j = 1,..., p, of the divisional problems are possible,
with division j receiving information of how much is remaining of the overall resource
vector do; after divisions 1,...,j — 1 have solved their problems.

Definition 2. Hierarchical decomposition means delegating to the divisions a hier-
archical ordering along with the prices defined by the objective functions of (P;),
j=1...,p

We note that the revised prices defined here are slightly different from the ones
used by Dantzig-Wolfe. While Dantzig-Wolfe correct for all of the global resources
used, we do not charge anything for the amount that division j uses of the resources
do; of which it is about to use up the remainder after divisions 1,...,j7 — 1 have
determined how much they want.

First we shall prove the following theorem giving some insight into the problem.®

Tureorem 1. Let the optimal solution to the master problem (M) be (&:,...,%5).
Then, assuming that Z; is feasible for the revised divisional problem (P;) for all i, it follows
that &; is optimal for the divisions for all 1.

8] am indebted to Sten Thore for the idea to this theorem. See also Thore-Kydland [16].
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ProoF. i, is feasible to (#)) by standard decomposition theory. For1 <k < pwe
have by assumption that & is (P:)-feasible.” This implics that

@ Cudr = do — 2 1ot Cuzy™.
But from (M) we have

(2) Cuafr = dox — 2 ios Ciifj .
Together (1) and (2) imply

@) S Gt = DA CuE;

Turning to the dual side, note that is (D;)—feasible, and (u, ) is (De)—
feasible, k = 2, ..., p. We therefore have

(a — Z.?..z 5.Cq)d < dads,
4) (a-— Zf.k“ 5:Ca) & < tadi + i (dox — 71 Cuizi*)
= tds + e (dox — 2oao1 Cui)y, kK =2,...,P
where the last equality follows from (3). Summing these inequalities we get:
2?—1 &% — Zf—x Z?—xu b:Cale
< Y tde + Db, o — b, DA 6CiE;
e b od — 20k 2l 0iCak
< 3 mde + 2y iede — 2250 Db i BiCiiE;
& Tr o8 S Lo Gath + 2hea Tedor .
But since (£1,...,%,) and (4,...,%p,02,...,7) are optimal to (M) and (D),
respectively, the above inequality must hold with equality. Therefore, the inequalities
in (4) must hold with equalities. Q.E.D.
The main results of this paper are the following theorems.
TreoREM 2. Let the optimal solution to (M) be (%1, . .. , &) Then #, is an optimal
solution to (P)). Taking each division 1,7 = 2,...,p, in succession, we have that if, for
all i, %;_y 1s a unique optimal solution to (P:-1), then &; is optimal to (P;).

Proor. The problem formulation (Py) for division 1 is the same as in the Dantzig-
Wolfe formulation. It is well known that a master optimum will always constitute
optima for the divisions using the revised prices for common resources according to
Dantzig-Wolfe. If this optimum for division 1 is unique, then y* = &, wm* = .

In general, let us look at division k, 1 < k < p, and assume that z,*, . .., Tr have
been successively obtained, and have all been unique for the respective divisions.
Forming the divisional problem for division k in the standard manner (as opposed to
the formulation (P:)) we get maximize (cx — 32, 5.Ca)xs subject to Awzi = dr,
7 2 0, and its dual problem: minimize u:dx subject to wAy 2 — 2.0, 5:Ca . The
master optimum # must constitutc an optimum for this division, so that
(cr — 224 5:Ca) e = tiads . Rearranging, we get

(5) (e = X Porpr BiCat)Ea = Wdi + 5:Clrs .
However, from (M), and sincc z*=2%;, j=1..., k—1, Cuzi = dox —

7The proof for k = p is the same as for 1 < k < p if we define Y 2. p41 = 0. This is the case
also in Theorem 2.



HIERARCHICAL DECOMPOSITION IN LINEAR MODELS 1033

Y1 CuE = do — 2,521 Chyz,* which, inserted into (5), gives

(6) (e — 2 2kp1 8:Cw) & = tiads + Bx(dox — 2521 Criz,®)
implying that £, is optimal for (P:).
If this optimum is unique, then z:* = & , w* = G, n* = o . Q.E.D.

In Theorem 2 we require the optimal solution for each division to be unique. It
would be helpful to know when this is the case, and that is the subject of the following
theorem.®

THEOREM 3. Let g, be the number of basic variables in Z; relative to the global problem,
andletr; = qs— m;,j = 1,...,p. If my = r;for all j when hierarchical decomposition
18 used, then, for the divisional optimal solutions to constitute the global solution, it 1s
sufficient to delegate the hierarchical ordering in addiiion to a set of prices.

Proor. The number of basic variables in a linear programming problem is equal to
the number of constraints (excluding the nonnegativity constraints). Therefore, if
mo; = r; = 0, that is, if the number of basic variables in Z, is equal to the number of
rows in A;, then Z; is a basic feasible solution for the constraint set {A;z; = d;,
z; = 0}. In this case the Dantzig-Wolfe procedure provides a set of prices such that
Z; is chosen as optimal by division j.

If r; > 0, then the basic variables of Z; relative to the global problem are not a basic
solution for the set of equations Az; = d; . However, if we add the m,; equations
Cjix; = dyj — E{:{ C;ix*, and if mg; = r;, then Z, is a basic solution to this new
system of q; = m; + mq; equations if the columns of the matrix [4’;:Cj;]’ relative
to the basis elements of Z; form a basis of rank g; for division 5. Denote this potential
basis by B;, and the basis corresponding to Z for the global problem by B.

To show that B, is nonsingular, we expand | B | and the resulting minors succes-
gively in such a way that we are left with a sum of products, each product containing
| B;| as a “actor. Assume that the column vectors of B are ordered by division in
increasing order. Then the expansion of | B | can be done in the following way. First
we expand B by its first row (unless j = 1). This gives us a sum of products of the
coefficients from the first row of B, with their cofactors in B. Now we expand the re-
sulting minors by their first row, that is, by elements originally from the second row
of B, and so on until the first row of each minor contains elements from the first row
of B;. Then we expand the remaining minors successively by all of the rows with
coefficients from Ca, ¢ = 1,...,j7 — 1, and all k. Because of the nearly lower block
triangular structure of the global constraints, this last expansion will leave all of B;
in the resulting minors. Finally, we expand all of these minors by all the columns
corresponding to divisions j + 1, ..., p. That leaves us with the desired expanded
form of | B | containing no other minors than | B; |.

In order for | B | to be nonzero we must have | B;| # 0. B; represents a basis for
division j yielding Z; as a basic feasible solution. It is well known that every basic
feasible solution corresponds to an extreme point of the set of solutions,? and that, for
every extreme point, there is a price vector such that this point is the unique optimal
solution.!® Q.E.D.

® The dimensions m; and mg; were specified in problem formulation (M). We define mq to be zero.

? See Gass (9, p. 52).

10 If the price vector as defined by (P;) leads to alternative optima, we know that there is an
arbitrarily small perturbation of the price vector that makes the desired solution the only optimal one.
See also 5, p. 314].
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It is clear that we could not in gencral have mq; < r;, because then the rank of any
basis for division j would be less than g, . However, the reason for excluding the case
ma; > r; possibly needs a justification.

Let m = 2.2, (m; + my;). We know that 32 ,g; = m. We also have that
Yr = 3 .q— dram = 32 mo; . If mo; > 7; for some j, then there is a
division k for which ma < 7, which in general is not permissible.

In cases of degeneracy, where the number of nonzero variables is less than the
number of basic variables, it may still be possible to find prices to insure coordinated
action with mq; < r; for some j as long as the number of nonzero variables is not
larger than m; + mo; .

Whether the conditions for Theorem 3 are satisfied or not depends on the existence
of a nearly lower block triangular structure in the global constraints. However, if the
condition mq; = r; is not satisfied for all the divisions, we can still use hierarchical
decomposition supplemented by r; — mo; preemptive goals for division j. The most
extreme case of an absence of a lower block triangular structure would be the one
where mg, = 0 for all j = 1,...,p — 1. In that case we would need to delegate 7;
goals to all but the last division.

It is interesting at this point to compare our results with those of Charnes-Clower-
Kortanek [5]. Their method of preemptive goals is equivalently stated in terms of
goals via the objective function or via the constraints. The latter method is more
easily comparable with ours. For simplicity we write the global constraints as
ZE,, Cizi = do, that is, we do not partition the rows. Charnes-Clower-Kortanek
delegate to each division j the quantities a; = C,&; of the overall resources along with
prices according to Dantzig-Wolfe. This means delegating %, mo; preemptive goals
to each division. OQur results show that no more than r; goals are needed.

3. Application in Central Planning

It may be interesting to see how hierarchical decomposition can be used in central
planning of an organization in a similar fashion as the Dantzig-Wolfe method. But now,
instead of assigning weights at the end, we take advantage of a small piece of informa-
tion which can be obtained from the plans that the divisions submit to the central
unit. When the divisional problems are nondegenerate, the number of nonzero vari-
ables in their plans indicates how many constraints they are working with and is
denoted by m; here. When the central unit has determined the optimal values for the
dual variables, but before the duals are used in computing the final revised prices, the
central unit can, for each division j, subtract m; from the number of basic variables in
the part of the global solution relative to division j. The result is what we have denoted
by r; . For divisions with r, = 0 there is no difficulty. For them prices are sufficient to
induce them to choose their part of the optimal global plan.

For the divisions with r; > 0 the central unit will try to find an ordering such that
the remaining columns, if the coupling constraints are properly reordered, form a lower
block-triangular matrix with mo; = 7; ; that is, the part of the lower block-triangular
matrix with only gero-blocks for divisionsj + 1,...,p has a row dimension of r; . If
this is possible, it is sufficient for division j to be given a set of prices and to know how
much remains of the overall resource vector dq, after the previous divisions in the
ordering have solved their problems.

If it is impossible to find a complete hierarchical ordering that works, it may still be
possible to find a partial one; that is, for some divisions to whom weights have to be
assigned under the Dantzig-Wolfe procedure, we can instead use the hierarchical
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ordering procedure, while the remaining divisions may be given r; — mq; preemptive
goals. This means that at least for some divisions an increase in autonomy may take
place.

A hierarchical ordering seems particularly natural in the case where most of the
global constraints are of the pass-over type with coefficient +1 in some column for one
of the divisions, —1 for some other division, and with right-hand side equal to zero.
An example of this is when the product of one division is used as an input in the pro-
duction of some other division. One of these divisions can then determine what quantity
should be delivered, and the theory of hierarchical decomposition provides a way for
the central unit to find out whether the delivering or receiving division should have
this role.

4. Numerical Examples

1. The first example to be presented is described in detail in [6]. Here we will only
formulate the problem and see how the theory of the previous sections can be applied.
The problem is presented in Table 1.

The optimal global solution is &1 = (7.13, 64.13, 0, 10.87), i, = (17.24, 8.12,
87.19, 7.13, 0, 0) and &'3 = (1.06, 7.06, 8.12, 0, 92.94). The duals relative to the two
coupling constraints are 2.94 and 2.83 respectively.

We see immediately that r, = 0,72 = 1,and 13 = 1. This means that if we delegate
the standard corrected prices (6.95, 8, 0, 0) to division 1, (3, 7.83, 8, —6.94, 0, 0) to
division 2, and (0,9, —7.83,0, 0) to division 3, then division 1 will find Z, as its optimal
solution, while Z and #; are strict convex combinations of basic solutions for the
respective divisions.

Fortunately, it turns out that in the problem above a complete hierarchical ordering
can be assigned instead of weights. The ordering is the one given above, and we have
me = 72 = 1 and mog = 713 = 1, satisfying the condition in Theorem 3. Division 1 must
solve its problem first and will get z,* = %i. Then division 2, knowing zJ, , will solve
the problem

max  3zm + 7.83z2 + 82 —  4xx

8. t. zn + Tz + Tos—  Tu = 105.42,
— T + 0.2z + 225 = —15.81,
— 1.5z + 2 4+ 26 = 75,
T2 =gh =713, 220,
which has the unique optimal solution z,* = &
Finally, knowing z3; , division 3 will solve
max 9z;m — 57w
s.t.  Tm+  Ta— Tw = 0,
~ 23 + 0.15z32 + Tu = 0,
Taz + x5 = 100,
T3 =z =812, 2520,

with the unique optimal solution z;* = Z; .



FINN KYDLAND

1036

sjulvI)s
-uod
auid
-nopH

¢'0
- 1

SIUTBIYS
-Too
[euois
Al

v— 8

yoad

oz

nr

[+

ur

nx ar

"z

(3¢ ax

I[qBUBA

£ uolsIALT

g uomalg

1 uoptarg

T dTdVL



HIERARCHICAL DECOMPOSITION IN LINEAR MODELS 1037

2. Our second example is the Birch Paper Company case [4], which was also used
by Charnes-Clower-Kortanck [5]. The Birch Paper Company consists of three divi-
sions N, S, and T, and the constraints are as follows!!

TABLE 2
Variable ur uw ug UNT uUgT urs uUps
Costs 0.48 0.43 0.432 —0.08 —0.005 -0.112 -0.036
1 1 1 = 1000
-1 -1 2 —ar
-1 -1 2 —as
1 -1 =0
1 -1 =0
1 -1 =0
1 -1 0

We shall use the second of the cxamples in [5], namely where ar = 700 and ag = 600.
The global optimal solution, including one slack variable as the last variable for each
division, is #» = (600, 400, 0, 0), &r = (600, 0, 100) and &'s = (600, 0, 0). The dual
solution is (0.43, 0, 0.142, 0.08, —0.03, 0.005, —0.003)," and the three divisional
problems with revised prices according to Dantzig-Wolfe become:

minimize 0.43ur + 0.43uw + 0.43ux

(N) s. t. ur + uw + ug = 1000, u's = 0,
minimize Ounr + Ouzr,

(m s. t. —uyr — ugr = —700, ws 20,

and

minimize —0.142urs — 0.03%ugs
S) s. t. —urg — ugg = —600, uw's 2 0.

We see that the global solution is optimal for all the divisions, but only S can find
this solution without further information, such as weights on basic solutions.

Now let us try to find a hierarchical ordering which will lead the divisions to the
global solution without delegating weights or preemptive goals. The optimal solution
is degenerate, and therefore there is more than one basis that can correspond to this
solution. One of these is such that ry = 2, rr = 2 and rg = 0. This means that S must
solve its problem first, giving the solution zg* = s . We must then order N second
and T third. The second and fourth coupling constraints give moy = 2 =7r~. N,
knowing uhg and ugg from §, is given the prices (0.40, 0.43, 0.427), and his optimal
solution is now zn* = & . Similarly, the first and third global constraints give mor =
9 = rp . Division T, knowing ur* and ug* from N, is given the prices (—0.08, —0.005)
and obtains zr* = Ir.

This problem illustrates the fact that for degenerate problems the condition of

11 See [5] for a description of the problem.
12 Note that the dual solution for this example, and therefore also the revised prices in the divisional
problems, is wrong in [5}.
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Theorem 3 may be stronger than necessary. Both division T and N need to know the
right-hand side of only one additional constraint instead of the two required by
the theorem.

3. Finally we shall give a simple example where hicrarchical decomposition does
not work. Consider the problem

max I+ 2z,

8. t. I é 1, 2] 1;

<
2423 u+2<i m,n20.

Introducing slack variables and solving, we find that # = % = £. If the first two
constraints are seen as divisional constraints and the last two as global constraints, it
is clear that for both of the two possible orderings we have r, = 1, while my; is defined
as zero. However, if instead the objective function is 8z, + z, , then the global solution
is £; = 1 and z; = . With division 1 solving first, we now have r, = 0 = mq and
T2 = 2 = mg and we can therefore use hierarchical decomposition.

5. Conclusion

In this paper we have formulated the decomposition problem for linear programming
in a particular way that is convenient for the theory of hierarchical decomposition.
This formulation leads to a specification of the divisional problems that is somewhat
different from any one presented in the literature so far, both in terms of how the
prices are revised, and also in terms of additional constraints that each division may
take account of. We define a hierarchical ordering which, when delegated along with
the revised prices, under conditions given in Theorem 3 insures coherent decentraliza-
tion.

We have stressed the importance of leaving much autonomy with the divisions in
making the final decision. The Dantzig-Wolfe procedure is deficient in this respect in
that it implies that some divisions must be told by the central unit what action to
take. The method of preemptive goals by Charnes-Clower-Kortanek was presented as
a way of giving the divisions more autonomy in making the final decision, although
there may not be much choice left when all the precmptive goals have been specified.
With the hierarchical decomposition procedure each division is free to make the final
decision and use whatever resources are optimal to him given what has been used by
the previous divisions in the ordering. This leaves the divisions with at least as much
autonomy as under the method of preemptive goals. For situations where the hier-
archical ordering has to be supplemented by, for instance, preemptive goals, we
provide the central unit with a rule for deciding how many goals are needed. As a
corollary we found that the method of Charnes-Clower-Kortanek as it stands means
delegating more information than is necessary, and we have sharpened their results in
that regard. In the special case of pass-over constraints we pointed out in §3 that it is
not even necessary to go via the central unit. Instead the information on quantities
can be passed on directly from one division to another.
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