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ABSTRACT

This paper develops theoretical and computational aspects of the dual problem in linear
fractional programming. This is done on the basis of two alternative methods for solving the
primal fractional programming problem, both of which were presented in earlier literature.
Parametric changes in the resource-vector are considered, and attention is given to infinites-
imal as well as to discrete changes.

INTRODUCTION

Consider the fractional programming problem

- _N(x) _cx+a
maximize Q(x) = D(x)  dxtp
subject to
(P1) Ax=b xeR™

z=0.

The first methods for solving this problem were apparently proposed by Dinkelbach [3] and Charnes
and Cooper [2], of which the latter is the easiest to use. It applies the simplex-method to a simple trans-
formation of the original problem (P1), and the problem can therefore be solved using a regular simplex-
algorithm for linear programs.

Martos [10] suggested an algorithm for applying the simplex-method to the original problem (P1),
but with modified entry criterion based on the gradient.t Swarup [12] describes an algorithm equivalent
to Martos’ and also suggests how to solve (P1) when the variables are required to be integers.

Some results connecting the solutions of linear fractional programming and those of parametric
linear programming are obtained in Jagannathan (5] and Dinkelbach [4]. In Kydland [8] we describe an
algorithm based on a parametric programming formulation of (P1). The article also contains an appli-
cation of fractional programming to linear operations.

Some work has been done on formulating a dual problem to (P1) and calculating dual variables.
Swarup considered theoretical aspects in {13], and went on to compute dual variables in [14] and [15].

*This report was prepared as part of the activities of the Management Sciences Research Group at Carnegie-Mellon L ni-

versity’s Graduate School of Industrial Administration. Reproduction in whole or in part is permitted for any purpose of the U.S.
Government.

tWagner and Yuan [16] have shown that this algorithm is algorithmically equivalent to Charnes and Cooper’s method, in
the sense that the variables of (P1) enter the basis in the same order.
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However, he has a pair of dual variables for each constraint, one being dual with respect to the numer-
ator and one for the denominator of the objective function. Chadda [1] in his decomposition algorithm
implicitly computes the same pair of dual variables as Swarup does.

Kaska [6] found the correct formulation of the dual variables; however, he incorrectly gives the

dual variables the interpretation of evaluating unit changes of the resource-vector b instead of in-
finitesimal changes. The reason for this difference from linear programming is, of course, that the
objective function is nonlinear.

In the next section we will state assumptions and formulate a dual problem to (P1). Then a section
is devoted to a brief description of Charnes and Cooper’s solution method, and we explain how to
compute the dual variables based on their method. A comparison with Martos’ algorithm is offered,

and here attention is also given to discrete changes of the resource vector b. The last section contains
a numerical example.

PRELIMINARIES
Referring to (P1), let S = {x|4x = b, x = 0}. We make the following assumptions
(a) S#g

() SN {zID(x) =0} = ¢

Without restricting the problem, we may also assume that D(x) > 0. If our original function is such

that D(x) < 0, then we can instead maximize Qx) = :%%;—;, where — D(x) >0.

According to Wolfe [17] the dual problem to (P1) is

(D1) minimize Q(x) — u(Ax—b)+vix
subject to: VO(x) —ud+vI=0
1) v=0.

In the following we will make use of the Kuhn-Tucker necessary optimality theorem for differen-
tiable functions.* Since our constraints are all linear, (P1) clearly satisfies the constraint qualification.
We therefore have:

THEOREM 1: Let % solve (P1). Then there exists & € R™ and 7€ R" such that
VO(x)—ad+sI=0
(KT)
u(Az—b)—plz=0

=0,

In view of Theorem 1 we see that at the optimum the value of the objective function of (D1) becomes

*See Kuhn and Tucker [7] or Mangasarian [91.
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Q(z) —a(Az—b) + vlz=Q(z);

i.e., the same as for (P1).
It may also be noted that since 4%=b, (KT) implies

x>0 agii) —aa;=0.
)

In the following, we will show how the dual variables can be found using first the method pro-
posed by Charnes and Cooper [2], and then the algorithm by Martos [10].

CHARNES AND COOPER’S METHOD

We make the transformation

y=ix,

where ¢t= ]— Then the primal problem (P1) can be written
dx+8

maximize Ly, t) =cy+at
(P2) subject to

(2) Ay—bt=0

3) dy+Bt=1

The dual of (P2) is

minimize A
(D2) subject to

4 wA+Ad=c

—whb+AB = a.

From linear programming theory we know that if (#, f) is an optimal solution to (P2), then there
exists (i, ):) optimizing (D2) and such that A = L(y,t)=Q(z), where Z=jy/t. This means that the dual
variable corresponding to constraint (3) has the value of the maximand we are looking for. What is
then the relationship between w in (D2) and u in (D1)? Let us write (1) more explicitly

1 cxta
i+ B (c_dx+/3 d)—-u.A+vI——0,
cx+ o

ie., uA+dx+B

td = tc, or
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1 cx+ o
(5) tuA+dx+Bd>c.

) +
At the optimum A= Z::+Z

, and so (5) is equivalent to (4) if w=% uw, or u=tw.
CONCLUSION: Solving the problem (P2) will give us one dual variable corresponding to each
constraint. The dual variables of (P1) are found by multiplying the dual variables for the constraints

(2) by t. The dual variable for constraint (3) has the value at the optimum of the function Q(x) that we are
maximizing.

MARTOS’ ALGORITHM

This algorithm is based on a direct application of the simplex-algorithm, with the exception that
the entry criterion for changing the hasis is different. The algorithm is well explained in Martos [10]
and we will only report our results here.

Assume that the algorithm has been applied to the problem (P1). Then the following quantities can
be found in the final tableau

Fi=ctB ! and di=d¥B ",

where B is the final basis, and ¢" and d" denote the subvectors of ¢ and d corresponding to vectors in
the basis. & and d* are similar to dual variables in linear programming, except that here we have two
sets of them, one set corresponding to the numerator and one to the denominator.

By use of Theorem 1 it is easy to show Theorem 2.

THEOREM 2: If (P1) has a nondegenerate optimal solution %, then

(6) i=(&* — QUF) dB) D(%).

Since the objective functi n is nonlinear, the u;’s will, in general, give the rate of change of the
objective function only for infinitely small changes in the b/’s. An advantage with Martos’ algorithm in
terms of postoptimization is that one can easily calculate the change in Q for changes in b by any given

amounts that do not result in a change of basis, or in general an upper bound for AQ. The formula when
b changes to b+ h is

N+ &'h N (@*—Qd"h_ Dah
D+d*h D D+dth  D+dPh

() AQ

When Charnes and Cooper’s method is used, the change in b will show up as a change in the
column corresponding to the variable. ¢, in the coefficient matrix for the LP-program, and we know

that this column will always be in the basis. It is therefore clear that analysis of changes in b here
becomes much more laborious.*

*See Simonnard [11], p. 157.
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NUMERICAL EXAMPLE: Consider the example

N(x) _3x1+5xz+2x3-—1
D(x) x:i+3x+x%+5

maximize Q(x) =

subject to: 3+ 22+ x5+ x4=2

i +4x,+x3+x5=1.

. _ 1
Following Charnes and Cooper, we let ¢t = e Intmis and formulate the problem as follows

maximize 3y; + 5y, + 2y; — ¢,
subject to: N+2y+y;—2t+y,=0
y;+4yz+y3—t+y5=0

y1+3yz+y3+52=1.

Applying the simplex-method, we obtain the following final tableau:

g | 3 6 2 -1 0 0

¢ »n 2 oy t ¥4 ¥s
13 -1 7 1
59 1 17 1
2 Y3 0 '1—2' 1 0 —E E E
-1 t 0 —-16- 0 1 0 —é— é
21 1 5} 1
Zj — Cj 0 'I—E 0 0 E Z n

This tableau is reached after three iterations starting with basis variables 4, ys, and ¢. The solu-
tion to the original problem is
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1
Xt 7 l 9

6
X2=y—;=0

1
x3=y—;=§.

The dual variables above are*

Ll 551
wh 2,1-02 PN a
Therefore,
1
b= =3
-
iy = ti: 2
R
Q) =Ar=7

Martos’ algorithm would, of course, have given the same solution, with dual variables calculated

from (6). If, however, we want to know the change in Q if for instance b increases by one unit, we can

use formula (7), which gives the result AQ = é% # iz
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